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Abstract 
Exact univariate probability density functions 
(p.d.f.'s) of the magnitude of the normalized structure 
factor, taking into account space-group symmetry and 
the chemical composition of the asymmetric unit, 
have been investigated. The p.d.f.'s that represent 
distributions for centrosymmetric space groups are 
given by single Fourier series, while those for the 
non-centrosymmetric ones can be obtained from 
double Fourier series or, more conveniently, from 
single Fourier-Bessel expansions. Analytical 
expressions for the expansion coefficients are given 
for all triclinic, monoclinic and orthorhombic space 
groups, except Fdd2 and Fddd. These results are 
applied to a comparison of simulated distributions, 
based on a CgU asymmetric unit and the space groups 
P1, P1, P2 (or Pm), P2/m, P222, Prom2 and Pmmm, 
with the theoretical p.d.f.'s derived here and with 
approximate generalized p.d.f.'s given by previously 
published five-term Hermite and Laguerre 
expansions. The performance of the Fourier and 
Fourier-Bessel p.d.f.'s is very good throughout the 
range of symmetries investigated, while that of the 
approximate ones is rather poor for the lowest sym- 
metries and improves - albeit not uniformly - for the 
higher ones. Pertinent programming considerations, 
which suffice for the implementation of the new 
r~sults in appropriate software, are presented. 

Introduction 
Exact univariate and multivariate distributions of the 
normalized structure factor have recently been intro-. 
duced in crystallographic statistics, and their perfor- 
mance in situations arising in intensity statistics, as 
well as their application to simple sign relationships, 
have been discussed and illustrated (e.g. Shmueli, 
Weiss, Kiefer & Wilson, 1984; Shmueli, Weiss & 
Kiefer, 1985; Shmueli & Weiss, 1985). The principles 
of the derivation of probability density functions 
(p.d.f.'s) that account explicitly for crystal symmetry 

0108-7673/87/010093-06501.50 

and composition have been given in some detail 
(Shmueli & Weiss, 1985), and their applications to 
specific cases are now possible. We started from the 
simplest instance, the p.d.f, of the magnitude of one 
normalized structure factor, and tried to represent it 
for a range of space-group symmetries. Preliminary 
results of our work on this subject have been presen- 
ted elsewhere (Weiss, Shmueli, Kiefer & Wilson, 
1985). 

Probability distributions of one structure factor are 
of interest in the field of intensity statistics, and find 
their use in the resolution of space-group ambiguities. 
It is well known that the presence of outstandingly 
heavy atoms can cause serious discrepancies between 
observed distributions and those based on the central 
limit theorem (Wilson, 1949), and can give rise to 
difficulties in space-group determination. This prob- 
lem has been extensively studied using truncated 
Gram-Charlier p.d.f.'s (e.g. Shmueli, 1979; Shmueli 
& Wilson, 1981, 1983; Shmueli & Kaldor, 1981, 1983), 
and such generalized p.d.f.'s, appropriate to all the 
space groups, are available for the case of all the 
atoms occupying general positions. These approxi- 
mate p.d.f.'s perform well in cases of moderate atomic 
heterogeneity, and for many space groups of higher 
symmetries. However, their performance is least satis- 
factory for low symmetries, and especially when the 
composition is strongly heterogeneous and the 
number of atoms in the asymmetric unit is small. 
It is therefore desirable to develop and present 
expressions for the exact p.d.f.'s for the low-symmetry 
space groups. 

The purpose of this paper is to present a 
classification of the exact p.d.f.'s that have been found 
to be most useful, to derive their functional forms for 
the triclinic, monoclinic and orthorhombic space 
groups and to compare their performance with that 
of the older approximate statistics using simulated 
distributions based on highly heterogeneous asym- 
metric units. The results presented in this paper can 
form the basis of application software, and such soft- 
ware, in which both the exact and the approximate 
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94 EXACT RANDOM-WALK MODELS. I I I  

approaches are implemented, is presently being 
developed. 

Probability density functions 

The normalized structure factor will be written as 

N / g  

E ( h ) =  E njTj(h)=A(h)+iB(h) ,  (1) 
j = l  

where 
Tj(h) = 6(h)  + irb(h) 

g 

= E exp[27r ihr(Psr j+ts) ]  (2) 
,s=l 

is the trigonometric structure factor, which contains 
the explicit dependence on the space-group operators 
(P,t) ,  nj is the normalized scattering factor, n~ = 
£/(~=~f2k)~/2, N is the number of atoms in the unit 
cell and g is the number of asymmetric units in the 
cell (order of the point group times the multiplicity 
of the Bravais lattice). We confine our calculations 
to the case of all the atoms being located in general 
positions, and assume that (i) effects of rational 
dependence are negligible (cf Shmueli, Weiss, Kiefer 
& Wilson, 1984; Shmueli & Weiss, 1985) and (ii) the 
contributions of different atoms, within the asym- 
metric unit, to the structure factor are independent. 
These assumptions permit one to treat the atomic 
phase factors as random variables, uniformly dis- 
tributed over the [0, 27r] range. 

The principle of the derivation of exact p.d.f.'s of 
the structure factor in the form of Fourier series 
consists of two elementary premises: 

(i) A centrosymmetric normalized structure factor, 
or the real or imaginary part ofa  non-centrosymmetric 
one, must be confined to the [ - EM, EM ] range, where 
EM is the sum of the normalized scattering factors. 

(ii) Since the probability of finding (a real) E, or 
either of A and B, outside the [ - EM, EM ] interval is 
zero, probability density functions of these quantities 
can be regarded as bounded and the p.d.f.'s can 
therefore be expanded in Fourier series on this 
interval. 

As shown by Shmueli & Weiss (1985), the above 
applies to any number of structure factors, and the 
general features of the underlying formalism have 
been given in the above study. For consistency of 
notation, we shall designate the reciprocal of the sum 
of the scattering factors by 

,~ = nj . ( 3 )  
j = l  

Centrosymmetric space groups 

The p.d.f, of lE[ is given for these space groups by 

p(IEI)=~ 1+2  E C,,cos(~o~ulEI), (4) 
u = l  

where 

and 

N/g 
c .=  I1 c,,j, (5) 

j = l  

C,j = (exp (~'ianju~j)), (6) 

where ~) is the (real) trigonometric structure factor 
of the j th  atom. (4) has been applied to the space 
group P1, and the coefficients (5) were derived for 
crystallographic and non-crystallographic symmetry 
(Shmueli, Weiss, Kiefer & Wilson, 1984; Shmueli, 
Weiss & Kiefer, 1985; see also Appendix A). 

Non-centrosymmetric space groups 

Following the method of Shmueli & Weiss (1985), 
we can write the joint p.d.f, of the real and imaginary 
parts of E as the double Fourier series 

p ( A , B ) = ( a / 2 ) 2 E Y ~  C, ,~exp[-Tr ia(uA+vB)] ,  

(7) 

where 

and 

N / g  

c ~ =  II c.~j (81 
j = l  

C,,~j = (exp [ Trianj( u~j + wTj) ]), (9) 

where Tj = scj + ir b is the trigonometric structure factor 
of the j th  atom. Some examples of the averaging to 
be done in (9) are given in Appendix A. 

Since we are interested, in the present context, in 
the p.d.f, of the magnitude IEI of the normalized 
structure factor, we transform (7) by introducing the 
variables [El and q~, where q~ is the phase of the 
structure factor, as A = IEI cos ~ and B = IE[ sin ~0, 
and integrate out the phase. The result is 

7/" 
p( lE l )=-2o~2 lE l~  C,,vJo[~O~(u2+v2)'/=ltl]. (10) 

t, t~ 

Equation (10), with coefficients given by (8) and (9), 
is applicable to any non-centrosymmetric space 
group. This equation was first given by Weiss, 
Shmueli, Kiefer & Wilson (1985). 

When the coefficients C,,~ in (10) depend on 
(u2+ v2) 1/2 only, i.e. they have radial symmetry in the 
(u, v) index space, we can, following Barakat (1974), 
represent the p.d.f, of the magnitude IEI by a single 
Fourier-Bessel series (Berg & McGregor, 1966), 
which takes the form 

oo 

p(IEI)--2a2IEI ~ DJo(~WIEI), (11) 
u = l  

where 

D,, = [J~(y , ) ] - '  C(aTu) (12) 
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and 
N / g  

C(otT,,)= 1-I C.j, (13) 
j = l  

where Jl(x) is the Bessel function of the first kind, 
of the first order, and y, is the uth root of the equation 
Jo(x) = 0 (cf. Shmueli, Weiss, Kiefer & Wilson, 1984; 
Weiss, Shmueli, Kiefer & Wilson, 1985). 

Numerical computations of the p.d.f.'s from single 
Fourier-Bessel series are of course faster than those 
using the double Fourier series (10), but both rep- 
resentations converge fairly rapidly. 

Examples and discussion 

The formalism of the previous section was applied 
to the derivation of analytical forms of the Fourier 
and Fourier-Bessel expansion coefficients for the 
monoclinic and orthorhombic symmorphic space 
groups. These coefficients, together with those given 
by Shmueli, Weiss, Kiefer & Wilson (1984) for P1 
and P L  extend the exact p.d.f.'s to all the space 
groups of the first three crystal systems, with the 
exception of Fdd2 and Fddd. This is so since, for 
these systems, the moments of the trigonometric struc- 
ture factor are associated with the point groups rather 
than with the space groups (Shmueli, 1979; Shmueli 
& Kaldor, 1981, 1983) and so are the moments of the 
structure factor and its p.d.f.'s. The atomic contribu- 
tions to the expansion coefficients are listed in Table 
1 and some of their derivations are briefly illustrated 
in Appendix A. 

These exact p.d.f.'s, the previously given approxi- 
mate Gram-Charlier expansions (Shmueli & Wilson, 
1981; Shmueli, 1982a) and simulated distributions of 
[E[ - all for a C9U asymmetric unit - were computed 
and compared. The calculations were carded out for 
all the point groups listed in Table 1, represented by 
symmorphic space groups with P-type lattices, and 
the simulation was carded out as described elsewhere 
(Shmueli, 1982b; Shmueli, Weiss, Kiefer & Wilson, 
1984). Some simulated and theoretical p.d.f.'s are 
shown in Fig. 1, and a list of the X 2 and R discrepancy 
criteria, evaluated as detailed by Shmueli, Weiss, 
Kiefer & Wilson (1984), is given in Table 2. 

It is seen that the exact p.d.f.'s, shown by solid 
lines in Fig. 1 agree very well with the simulated 
distributions throughout the range of symmetries con- 
sidered, while the performance of the Gram-Char ie r  
p.d.f.'s (dashed lines) is rather poor for the triclinic 
space groups and improves as the symmetry increases. 
In one case, for the space group P222, the exact p.d.f. 
seems to offer only a marginal improvement over that 
achieved by the five-term Gram-Charlier expansion 
appropriate to this space group. It is also interesting 
to note that the distribution for Pmm2 is clearly on 
the 'centric' side, while that for Pmmm is similar to 
the bicentric one (e.g. Shmueli, 1982b). One must, of 

Table 1. Atomic contributions to the expansion 
coefficients of Fourier and Fourier-Bessel p.d.f.'s 

The table lists the point-group symbols and the corresponding 
analytical expressions of  the atomic contributions to the expansion 
coefficients. These expressions are applicable to all the space 
groups that are based on the point group in a given entry, except 
those given in the footnotes. The superscripts (1), (2), or (3) indicate 
that the contribution pertains to the single Fourier p.d.f., equation 
(4), the single Fourier-Bessel p.d.f., equation (11), or the double 
Fourier p.d.f., equation (10), respectively. The abbreviations in the 
Table are: 

auj = g'n'an.iu, buj = ganj'yu and cuvj = gomj~r( u 2 + 1)2) 1/2, 
where g is the order of  the point group times the multiplicity of  
the Bravais lattice, u and v are summation indices, nj is the 
normalized scattering factor of  atom j and a is given by equation 
(3). 

Point Atomic 
group(s) contribution 

(3) _ j, c 1 C(u21)=Jo(buj) o r  Cur j -  o ( u v j )  

i c~ > = Jo(%) 
C(2)  2 --(3) -- j20(Cuoj/2 ) 2,ra , , j=Jo(b# /2 )  or L ~ j -  

2 /m C 0) 2 :j = Jo(auJ2) 
,n'/2 

C (3) - 2 ~r 222 v . o j - (  / ) I Jo(IX+ YI )Jo( IX-  Y}) dO 
o 

where 
X = (a,j/2) cos 0 and Y = (auJ2) sin 0 

~r/2 
,-(2)_ 2 ¢r O]d0 mm2* t..uj - (  / ) ~ j2o[(buJ2) cos 

o 
,n./2 

or c~=(2/~) ! J~ot(cuoj/E)cos 01dO 
,n'/2 

m m m t  " ( ' )  t~uj =(2/¢r) I J~[(a.J2)  cos O] dO 
o 

* Not applicable to Fdd2. 
t Not applicable to Fddd. 

course, keep in mind the rather high atomic 
heterogeneity (one U and nine C atoms in the asym- 
metric unit) that was assumed and the consequent 
strong effect of the heavy atom on the distribution. 

It was found in this and previous studies that the 
dependence of the fourth moment of I EI on a range 
of symmetries and a somewhat more moderate atomic 
heterogeneity, given by Shmueli & Wilson (1981), 
provides a good qualitative indicator of space-group 
symmetries which are likely to be problematic. This 
is seen from the comparison of Pmm2 with Pmmm, 
and is also expected to be found in the pairs (P4mm, 
P4/mmm) and (P6mm, P6/mmm) and perhaps in 
some other space groups. It is therefore likely that 
some space groups of higher symmetries will be 
studied by the methods of this paper; some analytical 
work still needs to be done in order to reduce the 
readily available formal expressions to a form lending 
itself to routine computation. However, in most space 
groups of higher symmetries the departures from the 
asymptotic centric and acentric distributions (Wilson, 
1949) are usually smaller than those in the space 
groups here treated, and the available (for all the 
space groups) four-term Gram-Charlier expansions 
(Shmueli & Wilson, 1981; Shmueli & Kaldor, 1981, 
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Table 2. Discrepancies between the theoretical and 
simulated distributions given in Fig. 1 

The table lists the X 2 and R discrepancy factors between the Fourier 
(and Fourier-Bessel) and Gram-Charlier  p.d.f.'s and the his- 
tograms which were simulated for the composition CgU of the 
asymmetric unit in each of the space groups shown. 

Explanation of  Table headings: 
(h-ex) - comparison of histogram with the p.d.f, computed from 

Fourier or Fourier-Bessel expansion. 
(h-GC) - comparison of histogram with the p.d.f, computed as a 

five-term Gram-Charlier  expansion. 
,~2(28) - approx. '95% confidence' expected value o f x  2 (Shmueli, 

Weiss, Kiefer & Wilson, 1984). 
/~ - expected value of R (cf. above reference). 

Note: the expected values of X 2 and R pertain to the comparison 
of the histogram and the Fourier or Fourier-Bessel p.d.f. 

Space 
group(s) xZ(h-ex)x2(h-GC) ,~2(28)  R ( h - e x ) R ( h - G C )  /~ 

P1 4.72 1160-71 14.48 0.032 0.507 0.036 
P1 10.99 236.89 30-00 0.052 0.245 0.070 
P2 (Pro) 16.88 528.68 27.31 0.060 0.339 0.067 
P2/m 18.96 115.47 35.27 0.065 0.150 0.076 
P222 23.58 54.93 32.65 0-071 0.094 0.070 
Prom2 19.91 295.44 33.96 0.066 0.311 0.074 
Pmmm 28.67 94.45 42.97 0.072 0.181 0.069 

1983) are likely to perform reasonably well for many 
higher symmetries, even in cases of conspicuous 
atomic heterogeneity. 

As is obvious from the underlying assumptions (see 
above), the present results are applicable to structures 
having all the atoms in general positions and in which 
effects of rational dependence are negligible, 
especially among the heavy scatterers. While the 
problem of special positions calls for a calculation 
of characteristic functions (e.g. Kendall & Stuart, 
1969) for the appropriate forms of the trigonometric 
structure factor, and is soluble at least in principle, 
the problem of accounting for rational dependence 

is clearly a much more serious one. In any case, it 
seems more advisable to compare the histogram of 
experimental [E[ values with the best available p.d.f.'s 
than to carry out statistical tests using only moments 
and cumulative distributions; the latter may be easier 
to compute, but they do not reveal the shape of the 
distribution and may well conceal 'surprises'. 

Another important consideration is the percentage 
of weak or 'unobserved' reflections removed from the 
data set. Such removal may distort the experimental 
distribution as a whole, and will affect mainly its low 
end. Thus, for example ifthe low end of a P1 distribu- 
tion is artificially underpopulated the resulting his- 
togram acquires apparent 'acentric' features, and it 
may be difficult to recognize the true symmetry 
without consulting the detailed distribution that is 
expected for the above space group, for the given 
atomic composition. The discrimination between 
other space groups, e.g. Prom2 and Pmmm, is also 
likely to be difficult in such circumstances. 

Programming considerations 

The coefficients for the space groups P1, P1, P2 (or 
Pm) and P2/m are most conveniently computed from 
polynomial approximations for Jo(x) and Jl(x) that 
are given in the literature (e.g. Abramowitz & Stegun, 
1972). The roots ('zeros') of Jo(x)=0, required for 
Fourier-Bessel expansions, are rapidly and accu- 
rately obtainable by taking the first five tabulated 
roots (Abramowitz & Stegun, 1972, Table 9.5) and 
generating the remaining ones from McMahon's for- 
mula (e.g. Shmueli, Weiss, Kiefer & Wilson, 1984, 
Appendix A). 

More care is needed in numerical evaluation of the 
integrals for P222, Prom2 and Pmmm, since the 
integrands are oscillatory functions and the frequency 

P(IEI) 

800 

600 

4°°I li' 
 ooi ,,,"It 

P(,E ) 
i~ P~ 300 

: 200 
ti,= 

i l i l~ I00 

II~. ~', .... 
....... ~"- ,e' 

P(;EI) / 
p~ 3°°I4~'", ' 

200 ~t!f~ 

100til[l[l[l' f 

, . . . . . . .   LILIIII[ 

Prom 2 

(a) (b) (c) 

P{ E.) 
40O 

300 

200 

100 

Pmmm 

1 2 iE 3 
(d) 

Fig. 1. Simulated and theoretical distributions for space groups of low symmetries. The histograms and theoretical p.d.L's were calculated 
assuming that the asymmetric unit of each space group contains nine carbon atoms and one uranium. The histograms are constructed 
from 3000 simulated [E I values each, in 30 equal channels and in the range 0 < ]E I < 3. The p.d.f.'s computed from Fourier and 
Fourier-Bessel expansions (see text) are drawn using solid lines, and the p.d.f.'s drawn using dashed lines are computed from 
five-term Hermite and Laguerre expansions of the Gram-Charlier  type (Shmueli, 1982a). All the p.d.f.'s are scaled to the corresponding 
histograms. An interval between successive divisions on the vertical axis of a drawing corresponds to 100 (channel) counts of the 
histogram shown. The triclinic and achiral orthorhombic symmetries are selected for this figure. For all the low symmetries, in the 
context of  comparison between exact and approximate expressions, see Table 2. (a) P1, (b)P1, (c) Prom2, (d) Pmmm. 
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of these oscillations increases with increasing value 
of the constant coefficient of the sine or cosine. For 
rough calculations, Simpson's rule or Gaussian quad- 
rature appear to be sufficient; however, the theoretical 
p.d.f. (and mainly its tail I E[ values) is then likely to 
be affected by ripples. We avoided this by using 
Romberg's adaptive integration algorithm (e.g. Davis 
& Rabinovitz, 1967), as implemented in the D C A D R E  
routine in the locally available IMSL program library. 

The number of terms in a single Fourier or Fourier- 
Bessel summation was usually taken as 40, because 
of the highly heterogeneous composition for which 
the illustrative examples were computed. This seems 
to be an upper  limit of what may usually be needed 
for a ten-atom unit, but more terms may be required 
for smaller units. 

We thank Mrs Zafra Stein for skillful and helpful 
programming and computing assistance, and we are 
grateful to Professor A. Ben-Reuven for helping us 
to simplify one of the integrals that appeared in the 
coefficient for P222. All the computations were car- 
ded out on the Cyber 170-855 at the Tel Aviv Univer- 
sity Computat ion Center. This research was suppor- 
ted in part by grant No. 84-00076 from the United 
States-Israel Binational Science Foundation (BSF), 
Jerusalem, Israel. 

Equation (A4) can be used in computing the 
Fourier coefficient for P1, for the double Fourier 
p.d.f. (10). In view of the rotational symmetry with 
respect to the index pair (u, v), the double Fourier 
series can be replaced by a single Fourier-Bessel 
expansion (see e.g. Spiegel, 1974) as shown in the text. 

Space group Pmmm 

The trigonometric structure factor is of the form 
= 8 cos 0j cos ~0j cos ~bj, where 0j = 2~rhxj, ~oj = 27rkvj 

and ~j = 2wlzj. We thus have 

Cuj = (exp [8zriomju cos 0j cos ~pj cos ~bj]), 

and integrating first over ~ we obtain 

C~,j = (2/'rr) 2 S/S Jo(8"n'anju cos 0 cos ~o)dO d~o. 
o 

(A5) 

One of the angular variables in (A5) can be integrated 
out, if we make use of the known definite integral 

~2jo(2Z COS X) dx=(er /2) j2(z )  (A6) 
0 

(Gradshteyn & Ryzhik, 1980, entry 6.519.1), thus 
leading to the coefficient for Pmmm appearing in 
Table 1. 

APPENDIX A 

The evaluation of the coefficients given in Table 1 
involves calculation of definite integrals that lead to, 
or contain, Bessel functions of the first kind. The 
technique employed is illustrated below by several 
examples. 

Space group P1 

The trigonometric structure factor is ~ + it/j, where 
= cos 0j and r/j = sin 0j, with 0j = 27r(hxj + kvj + lzj). 

Hence, using (9), the atomic contribution to the 
Fourier coefficient is given by 

C.,~j=(exp[.a-iomj(u cos 0j + v  sin 0j)]) (A1) 

=(exp[wianj(u2+v2) ~/2 cos ( 0 j -  A)]) (A2) 

27r 

=(27r) -~ ~ exp [Trianj(u2+v2) 1/2 
o 

Space group P222 

The trigonometric structure factor is of the form 
+ it/j, where ~ = 4 cos 0j cos ~oj cos ~j and r/j = 

- 4  sin 0j sin ~oj sin ~j, and0j, ~j, ~,j have the same 
meaning as in Pmmm above. Abbreviating to ~ = 
K(Oj, ~oj) cos ~,j and r/j = M(Oj, ~j) sin Oi, and follow- 
ing the same steps as outlined for P1 above, we obtain 

C, oj = (2/7r) 2 S/S Jo[47rotnj(u 2 cos 2 0 cos 2 ~o 
o 

+ v z sin 2 0 sin 2 ~0) 1/2] dO d~o. (A7) 

Equation (A7) can be rearranged to 

c.o  = Jo rP(0) 
o 

+ Q(O) cos 2 ¢]'/2} d0 dq~, (A8) 

where 

x c o s ( O - A ) ] d O  (A3) and 

= Io[  ~ r a n j ( u  2 + v2)'12], (A4) 

where tan A = v/u. The introduction of polar coordi- 
nates, leading from (A1) to (A2), and the integral 
representation of the Bessel function Jo(x) (e.g. 
Abramowitz & Stegun, 1972, entry 9.1.21), leading 
from (A3) to (A4), are frequently employed in these 
calculations. 

P(O)=8(wanj)2(u 2 cos 2 0 + v  2 sin 2 0) 

Q(O)=8(zranj)2(u 2 cos 2 0 - v  2 sin 2 0). 

Using the identity cos 2 ~ = ½+½ cos 2~0, introducing 
the variable r = 2~o and comparing the correspond- 
ingly rearranged form of (A8) with the known definite 
integral 

Jo[(x2+ y 2 - 2 x y  cos 7")l/2] d¢=.n'Jo(x)Jo(y) (A9) 
o 
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(cf. Gradshteyn & Ryzhik, 1980, entry 6.684.1), we 
arrive at the expression given for this coefficient in 
Table 1. 
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Abstract 

Explicitly representing the deformation of ions b.y the 
lattice dynamical shell model, the one-phonon scat- 
tering is written in a form that is amenable to direct 
evaluation. An analytic expression for the shell scat- 
tering factor is introduced, and the percentage alter- 
ation in the scattering brought about by the ionic 
deformation during vibration is calculated. Contour 
plots of the effect are presented for GaAs, ZnS and 
Si as representative of the zinc-blende-structure com- 
pounds and group IV elements. The alteration pro- 
duced by shell models is found to be negative, because 
for these materials the shell moves less than the core. 
Its maximum value varies from about -2 .5  to -15% 
depending on the material and lattice dynamical 
model used. Its structure in reciprocal space should 
be measurable and could lead to a better understand- 
ing of deformation processes. 

Introduction 

Continuing interest on how the deformation of an 
ion during vibration affects the scattering factors led 
to an earlier study by Reid (1983b) on the 
modification of the Debye-Waller factor likely to 
arise from this process. Using different shell models 
to represent the deforming ions, a quantitative analy- 
sis was made for 14 zinc-blende-structure materials. 

Since then, Matthew & Yousif (1984) have high- 
lighted the quantum-mechanical justification inherent 
in the shell model approach. It is therefore natural 
to complete the enquiry by asking what quantitative 
effects are expected from such deformation processes 
on one-phonon (X-ray) scattering. This scattering is 
of course not confined to Bragg reflections and there- 
fore gives a better picture of the decay of the effect 
with increasing scattering vector than is provided by 
the Debye-Waller  factors. 

The additional scattering processes 

Earlier studies of the effect of deforming atoms [ e.g. 
Melvin, Pirie & Smith (1968); Reid (1974); March & 
Wilkins (1978)] followed the lead of Born (1942) by 
introducing deformation parameters I~(ll ' ,kk' ,K) 
that described the dependence of the scattering factor 
for the atom (lk) on the motion of the atom (l'k') for 
scattering vector K. With a particular model of the 
deforming atom, such as the archetypal shell model, 
this approach is distracting and unnecessary. The 
usual one-phonon scattering cross section may be 
written in electron units per cell as 

I (K) / Ntrolo = ~, ( E / to2)qj l ~k fk ( K ) exp (-- Wk) 
J 

x K . 8 ( k / q j ) / m ~ k / 2  exp [ iG .  r(k)] 2 

× A ( K + q , G )  (1) 
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